Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Front Immunol ; 15: 1385875, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660306

RESUMO

Neuroblastoma (NB) is the most common extracranial solid pediatric cancer, and is one of the leading causes of cancer-related deaths in children. Despite the current multi-modal treatment regimens, majority of patients with advanced-stage NBs develop therapeutic resistance and relapse, leading to poor disease outcomes. There is a large body of knowledge on pathophysiological role of small extracellular vesicles (EVs) in progression and metastasis of multiple cancer types, however, the importance of EVs in NB was until recently not well understood. Studies emerging in the last few years have demonstrated the involvement of EVs in various aspects of NB pathogenesis. In this review we summarize these recent findings and advances on the role EVs play in NB progression, such as tumor growth, metastasis and therapeutic resistance, that could be helpful for future investigations in NB EV research. We also discuss different strategies for therapeutic targeting of NB-EVs as well as utilization of NB-EVs as potential biomarkers.


Assuntos
Biomarcadores Tumorais , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares , Neuroblastoma , Humanos , Neuroblastoma/terapia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Vesículas Extracelulares/metabolismo , Biomarcadores Tumorais/metabolismo , Animais
3.
Eur J Med Chem ; 263: 115940, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976707

RESUMO

IGF2BP1 is a protein that controls the stability, localization, and translation of various mRNA targets. Poor clinical outcomes in numerous cancer types have been associated with its overexpression. As it has been demonstrated to impede tumor growth and metastasis in animal models, inhibiting IGF2BP1 function is a promising strategy for combating cancer. A lead chemical, 7773, which specifically decreased IGF2BP1 RNA binding and cellular activities, was previously identified in a high-throughput screen for effective IGF2BP1 inhibitors. Additional optimization of 7773 described in this manuscript led to the discovery of six compounds that performed equally well or better than 7773. In cell lines with high levels of endogenous IGF2BP1, one of 7773 derivatives, AVJ16, was found to be most efficient at preventing cell migration. Further, AVJ16 was found to be IGF2BP1-specific because it had no effect on cell lines that expressed little or no IGF2BP1 protein. The direct binding of AVJ16 to IGF2BP1 was validated by binding tests, with a 12-fold increase in binding efficiency over the lead compound. AVJ16 was shown to bind to a hydrophobic region at the protein's KH34 di-domain interface between the KH3 and KH4 domains. Overall, the findings imply that AVJ16 is a potent and specific inhibitor of IGF2BP1 activity.


Assuntos
Neoplasias , Animais , Neoplasias/tratamento farmacológico , Neoplasias/genética , Movimento Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
4.
Cancers (Basel) ; 15(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37835389

RESUMO

NB, being a highly metastatic cancer, is one of the leading causes of cancer-related deaths in children. Increased disease recurrence and clinical resistance in patients with metastatic high-risk NBs (HR-NBs) result in poor outcomes and lower overall survival. However, the paucity of appropriate in vivo models for HR-NB metastasis has limited investigations into the underlying biology of HR-NB metastasis. This study was designed to address this limitation and develop suitable immunocompetent models for HR-NB metastasis. Here, we developed several highly metastatic immunocompetent murine HR-NB cell lines. Our newly developed cell lines show 100% efficiency in modeling experimental metastasis in C57BL6 mice and feature metastasis to the sites frequently observed in humans with HR-NB (liver and bone). In vivo validation demonstrated their specifically gained metastatic phenotype. The in vitro characterization of the cell lines showed increased cell invasion, acquired anchorage-independent growth ability, and resistance to MHC-I induction upon IFN-γ treatment. Furthermore, RNA-seq analysis of the newly developed cells identified a differentially regulated gene signature and an enrichment of processes consistent with their acquired metastatic phenotype, including extracellular matrix remodeling, angiogenesis, cell migration, and chemotaxis. The presented newly developed cell lines are, thus, suitable and promising tools for HR-NB metastasis and microenvironment studies in an immunocompetent system.

5.
Front Cell Dev Biol ; 11: 1236356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829185

RESUMO

Introduction: Wnt/ß-catenin signaling controls cell division and lineage specification during embryonic development, and is crucial for stem cells maintenance and gut tissue regeneration in adults. Aberrant activation of Wnt/ß-catenin signaling is also essential for the pathogenesis of a variety of malignancies. The RNA-binding protein IGF2BP1 is a transcriptional target of Wnt/ß-catenin signaling, normally expressed during development and often reactivated in cancer cells, where it regulates the stability of oncogenic mRNA. Methods: In this study, we employed iCLIP and RNA sequencing techniques to investigate the role of IGF2BP1 in the post-transcriptional regulation of Wnt/ß-catenin-induced genes at a global level within colorectal cancer (CRC) cells characterized by constitutively active Wnt/ß-catenin signaling. Results and Discussion: In our study, we show that, in contrast to normal cells, CRC cells exhibit a much stronger dependency on IGF2BP1 expression for Wnt/ß-catenin-regulated genes. We show that both untransformed and CRC cells have their unique subsets of Wnt/ß-catenin-regulated genes that IGF2BP1 directly controls through binding to their mRNA. Our iCLIP analysis revealed a significant change in the IGF2BP1-binding sites throughout the target transcriptomes and a significant change in the enrichment of 6-mer motifs associated with IGF2BP1 binding in response to Wnt/ß-catenin signaling. Our study also revealed a signature of IGF2BP1-regulated genes that are significantly associated with colon cancer-free survival in humans, as well as potential targets for CRC treatment. Overall, this study highlights the complex and context-dependent regulation of Wnt/ß-catenin signaling target genes by IGF2BP1 in non-transformed and CRC cells and identifies potential targets for colon cancer treatment.

6.
J Neurochem ; 167(2): 248-261, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37667496

RESUMO

Excessive brain iron accumulation is observed early in the onset of Alzheimer's disease, notably prior to widespread proteinopathy. These findings suggest that increases in brain iron levels are due to a dysregulation of the iron transport mechanism at the blood-brain barrier. Astrocytes release signals (apo- and holo-transferrin) that communicate brain iron needs to endothelial cells in order to modulate iron transport. Here we use iPSC-derived astrocytes and endothelial cells to investigate how early-disease levels of amyloid-ß disrupt iron transport signals secreted by astrocytes to stimulate iron transport from endothelial cells. We demonstrate that conditioned media from astrocytes treated with amyloid-ß stimulates iron transport from endothelial cells and induces changes in iron transport pathway proteins. The mechanism underlying this response begins with increased iron uptake and mitochondrial activity by the astrocytes, which in turn increases levels of apo-transferrin in the amyloid-ß conditioned astrocyte media leading to increased iron transport from endothelial cells. These novel findings offer a potential explanation for the initiation of excessive iron accumulation in early stages of Alzheimer's disease. What's more, these data provide the first example of how the mechanism of iron transport regulation by apo- and holo-transferrin becomes misappropriated in disease that can lead to iron accumulation. The clinical benefit from understanding early dysregulation in brain iron transport in AD cannot be understated. If therapeutics can target this early process, they could possibly prevent the detrimental cascade that occurs with excessive iron accumulation.

7.
Front Immunol ; 14: 1224516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37503349

RESUMO

Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP1, IGF2BP2, and IGF2BP3) are a family of RNA-binding proteins that play an essential role in the development and disease by regulating mRNA stability and translation of critical regulators of cell division and metabolism. Genetic and chemical inhibition of these proteins slows down cancer cell proliferation, decreases invasiveness, and prolongs life span in a variety of animal models. The role of RNA-binding proteins in the induction of tissues' immunogenicity is increasingly recognized, but, the impact of the IGF2BPs family of proteins on the induction of innate and adaptive immune responses in cancer is not fully understood. Here we report that downregulation of IGF2BP1, 2, and 3 expression facilitates the expression of interferon beta-stimulated genes. IGF2BP1 has a greater effect on interferon beta and gamma signaling compared to IGF2BP2 and IGF2BP3 paralogs. We demonstrate that knockdown or knockout of IGF2BP1, 2, and 3 significantly potentiates inhibition of cell growth induced by IFNß and IFNγ. Mouse melanoma cells with Igf2bp knockouts demonstrate increased expression of MHC I (H-2) and induce intracellular Ifn-γ expression in syngeneic T-lymphocytes in vitro. Increased immunogenicity, associated with Igf2bp1 inhibition, "inflames" mouse melanoma tumors microenvironment in SM1/C57BL/6 and SW1/C3H mouse models measured by a two-fold increase of NK cells and tumor-associated myeloid cells. Finally, we demonstrate that the efficiency of anti-PD1 immunotherapy in the mouse melanoma model is significantly more efficient in tumors that lack Igf2bp1 expression. Our retrospective data analysis of immunotherapies in human melanoma patients indicates that high levels of IGF2BP1 and IGF2BP3 are associated with resistance to immunotherapies and poor prognosis. In summary, our study provides evidence of the role of IGF2BP proteins in regulating tumor immunogenicity and establishes those RBPs as immunotherapeutic targets in cancer.


Assuntos
Melanoma , Microambiente Tumoral , Animais , Camundongos , Humanos , Estudos Retrospectivos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA/metabolismo , Imunidade
8.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37292926

RESUMO

Excessive brain iron accumulation is observed in early in the onset of Alzheimer's disease, notably prior to widespread proteinopathy. These findings suggest that increases in brain iron levels are due to a dysregulation of the iron transport mechanism at the blood-brain barrier. Astrocytes release signals (apo- and holo-transferrin) that communicate brain iron needs to endothelial cells in order to modulate iron transport. Here we use iPSC-derived astrocytes and endothelial cells to investigate how early-disease levels of amyloid-ß disrupt iron transport signals secreted by astrocytes to stimulate iron transport from endothelial cells. We demonstrate that conditioned media from astrocytes treated with amyloid-ß stimulates iron transport from endothelial cells and induces changes in iron transport pathway protein levels. The mechanism underlying this response begins with increased iron uptake and mitochondrial activity by the astrocytes which in turn increases levels of apo-transferrin in the amyloid-ß conditioned astrocyte media leading to increased iron transport from endothelial cells. These novel findings offer a potential explanation for the initiation of excessive iron accumulation in early stages of Alzheimer's disease. What's more, these data provide the first example of how the mechanism of iron transport regulation by apo- and holo-transferrin becomes misappropriated in disease to detrimental ends. The clinical benefit from understanding early dysregulation in brain iron transport in AD cannot be understated. If therapeutics can target this early process, they could possibly prevent the detrimental cascade that occurs with excessive iron accumulation. Significance Statement: Excessive brain iron accumulation is hallmark pathology of Alzheimer's disease that occurs early in the disease staging and before widespread proteinopathy deposition. This overabundance of brain iron has been implicated to contribute to disease progression, thus understandingthe mechanism of early iron accumulation has significant therapeutic potential to slow to halt disease progression. Here, we show that in response to low levels of amyloid-ß exposure, astrocytes increase their mitochondrial activity and iron uptake, resulting in iron deficient conditions. Elevated levels of apo (iron free)-transferrin stimulate iron release from endothelial cells. These data are the first to propose a mechanism for the initiation of iron accumulation and the misappropriation of iron transport signaling leading to dysfunctional brain iron homeostasis and resultant disease pathology.

9.
J Biomed Sci ; 30(1): 36, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277838

RESUMO

BACKGROUND: Apo- (iron free) and holo- (iron bound) transferrin (Tf) participate in precise regulation of brain iron uptake at endothelial cells of the blood-brain barrier. Apo-Tf indicates an iron-deficient environment and stimulates iron release, while holo-Tf indicates an iron sufficient environment and suppresses additional iron release. Free iron is exported through ferroportin, with hephaestin as an aid to the process. Until now, the molecular mechanisms of apo- and holo-Tf influence on iron release was largely unknown. METHODS: Here we use a variety of cell culture techniques, including co-immunoprecipitation and proximity ligation assay, in iPSC-derived endothelial cells and HEK 293 cells to investigate the mechanism by which apo- and holo-Tf influence cellular iron release. Given the established role of hepcidin in regulating cellular iron release, we further explored the relationship of hepcidin to transferrin in this model. RESULTS: We demonstrate that holo-Tf induces the internalization of ferroportin through the established ferroportin degradation pathway. Furthermore, holo-Tf directly interacts with ferroportin, whereas apo-Tf directly interacts with hephaestin. Only pathophysiological levels of hepcidin disrupt the interaction between holo-Tf and ferroportin, but similar hepcidin levels are unable to interfere with the interaction between apo-Tf and hephaestin. The disruption of the holo-Tf and ferroportin interaction by hepcidin is due to hepcidin's ability to more rapidly internalize ferroportin compared to holo-Tf. CONCLUSIONS: These novel findings provide a molecular mechanism for apo- and holo-Tf regulation of iron release from endothelial cells. They further demonstrate how hepcidin impacts these protein-protein interactions, and offer a model for how holo-Tf and hepcidin cooperate to suppress iron release. These results expand on our previous reports on mechanisms mediating regulation of brain iron uptake to provide a more thorough understanding of the regulatory mechanisms mediating cellular iron release in general.


Assuntos
Hepcidinas , Transferrina , Humanos , Transferrina/metabolismo , Hepcidinas/metabolismo , Células Endoteliais/metabolismo , Células HEK293
10.
Oncogene ; 42(19): 1558-1571, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36973517

RESUMO

Neuroblastoma is a highly metastatic cancer, and thus is one of the leading causes of cancer-related mortalities in pediatric patients. More than 50% of NB cases exhibit 17q21-ter partial chromosomal gain, which is independently associated with poor survival, suggesting the clinical importance of genes at this locus in NB. IGF2BP1 is one such proto-oncogene located at 17q locus, and was found to be upregulated in patients with metastatic NBs. Here, utilizing multiple immunocompetent mouse models, along with our newly developed highly metastatic NB cell line, we demonstrate the role of IGF2BP1 in promoting NB metastasis. Importantly, we show the significance of small extracellular vesicles (EVs) in NB progression, and determine the pro-metastatic function of IGF2BP1 by regulating the NB-EV-protein cargo. Through unbiased proteomic analysis of EVs, we discovered two novel targets (SEMA3A and SHMT2) of IGF2BP1, and reveal the mechanism of IGF2BP1 in NB metastasis. We demonstrate that IGF2BP1 directly binds and governs the expression of SEMA3A/SHMT2 in NB cells, thereby modulating their protein levels in NB-EVs. IGF2BP1-affected levels of SEMA3A and SHMT2 in the EVs, regulate the formation of pro-metastatic microenvironment at potential metastatic organs. Finally, higher levels of SEMA3A/SHMT2 proteins in the EVs derived from NB-PDX models indicate the clinical significance of the two proteins and IGF2BP1-SEMA3A/SHMT2 axis in NB metastasis.


Assuntos
Vesículas Extracelulares , Neuroblastoma , Animais , Camundongos , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Neuroblastoma/patologia , Proteômica , Semaforina-3A/metabolismo , Microambiente Tumoral
11.
J Biol Chem ; 299(2): 102868, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603765

RESUMO

Iron is essential for normal brain development and function. Hence, understanding the mechanisms of iron efflux at the blood-brain barrier and their regulation are critical for the establishment of brain iron homeostasis. Here, we have investigated the role of exosomes in mediating the transfer of H-ferritin (FTH1)- or transferrin (Tf)-bound iron across the blood-brain barrier endothelial cells (BBBECs). Our study used ECs derived from human-induced pluripotent stem cells that are grown in bicameral chambers. When cells were exposed to 55Fe-Tf or 55Fe-FTH1, the 55Fe activity in the exosome fraction in the basal chamber was significantly higher compared to the supernatant fraction. Furthermore, we determined that the release of endogenous Tf, FTH1, and exosome number is regulated by the iron concentration of the endothelial cells. Moreover, the release of exogenously added Tf or FTH1 to the basal side via exosomes was significantly higher when ECs were iron loaded compared to when they were iron deficient. The release of exosomes containing iron bound to Tf or FTH1 was independent of hepcidin regulation, indicating this mechanism by-passes a major iron regulatory pathway. A potent inhibitor of exosome formation, GW4869, reduced exosomes released from the ECs and also decreased the Tf- and FTH1-bound iron within the exosomes. Collectively, these results indicate that iron transport across the blood-brain barrier is mediated via the exosome pathway and is modified by the iron status of the ECs, providing evidence for a novel alternate mechanism of iron transport into the brain.


Assuntos
Barreira Hematoencefálica , Exossomos , Ferro , Humanos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , Ferro/metabolismo , Transferrina/metabolismo , Transporte Biológico
12.
FASEB Bioadv ; 4(12): 816-829, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36479210

RESUMO

Although colorectal cancer (CRC) treatment has seen a remarkable improvement in the recent years, many patients will develop metastasis due to the resistance of cancer cells to chemotherapeutics. Targeting mechanisms driving the resistance of CRC cells to treatment would significantly reduce cases of metastasis and death. Induction of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a direct target of the Wnt/ß-catenin signaling pathway, might promote resistance of CRC cells to treatment via activation of anti-apoptotic pathways and induction of the multidrug resistance (MDR1) membrane transporter that pumps drugs out of the cells. We hypothesized that inhibition of IGF2BP1 will sensitize CRC cells to chemotherapeutics. We used CRC cell lines with different status of activation of Wnt signaling to show that inhibition of IGF2BP1 potentiates the anti-growth and anti-proliferative effects of chemotherapeutics on CRC cells with activated Wnt/ß-catenin signaling pathway. We observed that the inhibition of IGF2BP1 significantly increases apoptosis in the same cells. A remarkable reduction in the migratory capability of those cells was noted as well. We found that inhibition of IGF2BP1 is sufficient to decrease the resistance of chemotherapy-resistant cancer cells with activated Wnt/ß-catenin signaling pathway. These findings portray IGF2BP1 as a good candidate for CRC therapy.

13.
J Immunother Cancer ; 10(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35483745

RESUMO

BACKGROUND: Anti-GD2 monoclonal antibody immunotherapy has significantly improved the overall survival rate for high-risk neuroblastoma patients. However, 40% of patients fail to respond or develop resistance to treatment, and the molecular mechanisms by which this occurs remain poorly understood. Tumor-derived small extracellular vesicles (sEVs) have emerged as critical regulators in modulating the response to immunotherapy. In this study, we investigated the role of neuroblastoma-derived sEVs in promoting resistance to the anti-GD2 monoclonal antibody dinutuximab. Moreover, to determine whether pharmacologic inhibition of sEV secretion sensitizes tumors to dinutuximab treatment, we combined dinutuximab with tipifarnib, a farnesyltransferase inhibitor that inhibits sEV secretion. METHODS: We investigated the role of neuroblastoma-derived sEVs in modulating the response to dinutuximab by utilizing the syngeneic 9464D-GD2 mouse model. The effect of neuroblastoma-derived sEVs in modulating the tumor microenvironment (TME) and host immune system were evaluated by RNA-sequencing and flow cytometry. Importantly, we used this mouse model to investigate the efficacy of tipifarnib in sensitizing neuroblastoma tumors to dinutuximab. The effect of tipifarnib on both the TME and host immune system were assessed by flow cytometry. RESULTS: We demonstrated that neuroblastoma-derived sEVs significantly attenuated the efficacy of dinutuximab in vivo and modulated tumor immune cell infiltration upon dinutuximab treatment to create an immunosuppressive TME that contains more tumor-associated macrophages and fewer tumor-infiltrating NK cells. In addition, we demonstrated that neuroblastoma-derived sEVs suppress splenic NK cell maturation in vivo and dinutuximab-induced NK cell-mediated antibody-dependent cellular cytotoxicity in vitro. Importantly, tipifarnib drastically enhanced the efficacy of dinutuximab-mediated inhibition of tumor growth and prevented the immunosuppressive effects of neuroblastoma-derived sEVs in vivo. CONCLUSIONS: These preclinical findings uncover a novel mechanism by which neuroblastoma-derived sEVs modulate the immune system to promote resistance to dinutuximab and suggest that tipifarnib-mediated inhibition of sEV secretion may serve as a viable treatment strategy to enhance the antitumor efficacy of anti-GD2 immunotherapy in high-risk neuroblastoma patients.


Assuntos
Antineoplásicos , Vesículas Extracelulares , Neuroblastoma , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Fatores Imunológicos/uso terapêutico , Imunoterapia , Camundongos , Neuroblastoma/patologia , Quinolonas , Microambiente Tumoral
14.
J Biol Chem ; 298(3): 101649, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104504

RESUMO

RNA-binding proteins (RBPs) regulate the expression of large cohorts of RNA species to produce programmatic changes in cellular phenotypes. To describe the function of RBPs within a cell, it is key to identify their mRNA-binding partners. This is often done by crosslinking nucleic acids to RBPs, followed by chemical release of the nucleic acid fragments for analysis. However, this methodology is lengthy, which involves complex processing with attendant sample losses, thus large amounts of starting materials and prone to artifacts. To evaluate potential alternative technologies, we tested "exclusion-based" purification of immunoprecipitates (IFAST or SLIDE) and report here that these methods can efficiently, rapidly, and specifically isolate RBP-RNA complexes. The analysis requires less than 1% of the starting material required for techniques that include crosslinking. Depending on the antibody used, 50% to 100% starting protein can be retrieved, facilitating the assay of endogenous levels of RBPs; the isolated ribonucleoproteins are subsequently analyzed using standard techniques, to provide a comprehensive portrait of RBP complexes. Using exclusion-based techniques, we show that the mRNA-binding partners for RBP IGF2BP1 in cultured mammary epithelial cells are enriched in mRNAs important for detoxifying superoxides (specifically glutathione peroxidase [GPX]-1 and GPX-2) and mRNAs encoding mitochondrial proteins. We show that these interactions are functionally significant, as loss of function of IGF2BP1 leads to destabilization of GPX mRNAs and reduces mitochondrial membrane potential and oxygen consumption. We speculate that this underlies a consistent requirement for IGF2BP1 for the expression of clonogenic activity in vitro.


Assuntos
Glândulas Mamárias Animais , Glândulas Mamárias Humanas , Proteínas de Ligação a RNA , Animais , Células Epiteliais/metabolismo , Feminino , Humanos , Imunoprecipitação , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/metabolismo , RNA/metabolismo , RNA Mensageiro , Proteínas de Ligação a RNA/metabolismo
15.
In Vivo ; 36(1): 49-56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972699

RESUMO

BACKGROUND/AIM: Neuroblastoma is clinically and molecularly heterogeneous, with poor outcomes despite multimodal treatment strategies. The primary tumor site is an independent predictor of survival; adrenal tumors have the worst outcomes, while posterior mediastinum tumors carry a more favorable prognosis. MATERIALS AND METHODS: To elucidate the role of the primary tumor microenvironment in mediating survival outcomes, we developed a mouse model for the study of extra-adrenal neuroblastoma by injecting luciferase-tagged cells into either the subpleural space of the posterior chest or the adrenal gland. RESULTS: Solid tumors developed in the thoracic cavity at the same rate and efficiency as the adrenal as early as one week post-surgery. The survival rate following surgery was equivalent, though the physiological tolerance for large tumors was lower in the thoracic group. CONCLUSION: This novel mouse model of survivable extra-adrenal neuroblastoma will enable future investigations of the distinct tumor microenvironments between the adrenal gland and posterior mediastinum.


Assuntos
Neoplasias das Glândulas Suprarrenais , Neoplasias do Mediastino , Neuroblastoma , Neoplasias das Glândulas Suprarrenais/cirurgia , Animais , Neoplasias do Mediastino/cirurgia , Camundongos , Modelos Anatômicos , Neuroblastoma/cirurgia , Prognóstico , Microambiente Tumoral
16.
RNA Biol ; 19(1): 26-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34895045

RESUMO

Igf2bp1 is an oncofetal RNA binding protein whose expression in numerous types of cancers is associated with upregulation of key pro-oncogenic RNAs, poor prognosis, and reduced survival. Importantly, Igf2bp1 synergizes with mutations in Kras to enhance signalling and oncogenic activity, suggesting that molecules inhibiting Igf2bp1 could have therapeutic potential. Here, we isolate a small molecule that interacts with a hydrophobic surface at the boundary of Igf2bp1 KH3 and KH4 domains, and inhibits binding to Kras RNA. In cells, the compound reduces the level of Kras and other Igf2bp1 mRNA targets, lowers Kras protein, and inhibits downstream signalling, wound healing, and growth in soft agar, all in the absence of any toxicity. This work presents an avenue for improving the prognosis of Igf2bp1-expressing tumours in lung, and potentially other, cancer(s).


Assuntos
Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Ligação Proteica/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Cancer Rep (Hoboken) ; 5(10): e1592, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34862757

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease in both children and adults. Although it is well-known that adult and pediatric AMLs are genetically distinct diseases, the driver genes for high-risk pediatric and adult AMLs are still not fully understood. Particularly, the interactions between RNA binding proteins (RBPs) and noncoding RNAs (ncRNAs) for high-risk AMLs have not been explored. AIM: To identify RBPs and noncoding RNAs (ncRNAs) that are the master regulators of high-risk AML. METHODS: In this manuscript, we identify over 400 upregulated genes in high-risk adult and pediatric AMLs respectively with the expression profiles of TCGA and TARGET cohorts. There are less than 5% genes commonly upregulated in both cohorts, highlighting the genetic differences in adult and childhood AMLs. A novel distance correlation test is proposed for gene regulatory network construction. We build RBP-based regulatory networks with upregulated genes in high-risk adult and pediatric AMLs, separately. RESULTS: We discover that three RBPs, three snoRNAs, and two circRNAs function together and regulate over 100 upregulated RNA targets in adult AML, whereas two RBPs are associated with 17 long noncoding RNAs (lncRNAs), and all together regulate over 90 upregulated RNA targets in pediatric AML. Of which, two RBPs, MLLT3 and RBPMS, and their circRNA targets, PTK2 and NRIP1, are associated with the overall survival (OS) in adult AML (p ≤ 0.01), whereas two different RBPs, MSI2 and DNMT3B, and 13 (out of 17) associated lncRNAs are prognostically significant in pediatric AML. CONCLUSIONS: Both RBPs and ncRNAs are known to be the major regulators of transcriptional processes. The RBP-ncRNA pairs identified from the regulatory networks will allow better understanding of molecular mechanisms underlying high-risk adult and pediatric AMLs, and assist in the development of novel RBPs and ncRNAs based therapeutic strategies.


Assuntos
Leucemia Mieloide Aguda , RNA Longo não Codificante , Adulto , Criança , Redes Reguladoras de Genes , Humanos , Leucemia Mieloide Aguda/genética , RNA Circular , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
18.
Front Oncol ; 11: 608816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796454

RESUMO

Gain at chromosome 17q21 in neuroblastoma is associated with a poor prognosis, independent of MYCN amplification status. Several potential proto-oncogenes have been identified in this region, one of them-insulin-like growth-factor-2 mRNA binding protein (IGF2BP1)-is expressed at high levels in stage 4 tumors, and associated with overall lower patient survival. Here, we demonstrate that down-regulation of IGF2BP1 activity, either by transcript silencing or chemical inhibition, suppresses neuroblastoma cell growth. Furthermore, the combination of IGF2BP1 inhibition along with commonly used chemotherapeutics that broadly affect DNA synthesis, or cyclin-dependent kinase (CDK) inhibitors that disrupt signal transduction, have a synergistic effect on the suppression of neuroblastoma cell proliferation.

19.
Data Brief ; 35: 106858, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33665254

RESUMO

This article contains supplemental datasets of the recently published related research article "Synthesis, Inverse Docking-Assisted Identification and in vitro Biological Characterization of Flavonol-based Analogs of Fisetin as c-Kit, CDK2 and mTOR Inhibitors against Melanoma and Non-melanoma Skin Cancers" by Roy et al., [1]. It provides in-depth data not included in the original co-submission on the biophysical, molecular docking, and biological characterization of newly synthesized flavonol-based analogs of fisetin, a natural dietary small molecule with anticancer and anti-inflammatory properties. These synthetic small molecules were investigated as new, potential single and/or multi-kinase inhibitors of the cyclin-dependent kinase-2 (CDK2), receptor tyrosine kinases (c-KITs), and mammalian targets of rapamycin (mTOR) targets, potentially active against melanoma or non-melanoma skin cancers. Furthermore, this data-in-brief article comprises additional sets of results on several aspects of the properties of the dual and multiple kinase inhibitor compounds' effects that were not presented in the associated article, including the activated targets that are dysregulated in skin cancers; the effects on markers of apoptosis; on colony formation; and in scratch wound healing assays. The study has identified a panel of novel fisetin analogs that are either single- or multi-kinase inhibitors, which may be further developed as active for the treatment of melanoma and non-melanoma skin cancers. The dataset presented herein will be utilized for additional studies aiming to establish a biological platform to steer for predictive and experimental screening of novel flavonoids and analogs in relevant organoids, humanized animal models and in vivo disease models. The present results should also serve as a key stepping-stone towards enabling target-structure-based design, synthesis and initial testing of novel analogs or derivatives of fisetin. The current study may eventually lead to the development of safe, promising and preclinical candidate entities for treatment of skin and other forms of cancers as well as various other human diseases, which can possibly add to the general armamentarium of promising and safe drugs for health promotion.

20.
Leukemia ; 35(5): 1267-1278, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33531656

RESUMO

Children of Hispanic/Latino ancestry have increased incidence of high-risk B-cell acute lymphoblastic leukemia (HR B-ALL) with poor prognosis. This leukemia is characterized by a single-copy deletion of the IKZF1 (IKAROS) tumor suppressor and increased activation of the PI3K/AKT/mTOR pathway. This identifies mTOR as an attractive therapeutic target in HR B-ALL. Here, we report that IKAROS represses MTOR transcription and IKAROS' ability to repress MTOR in leukemia is impaired by oncogenic CK2 kinase. Treatment with the CK2 inhibitor, CX-4945, enhances IKAROS activity as a repressor of MTOR, resulting in reduced expression of MTOR in HR B-ALL. Thus, we designed a novel therapeutic approach that implements dual targeting of mTOR: direct inhibition of the mTOR protein (with rapamycin), in combination with IKAROS-mediated transcriptional repression of the MTOR gene (using the CK2 inhibitor, CX-4945). Combination treatment with rapamycin and CX-4945 shows synergistic therapeutic effects in vitro and in patient-derived xenografts from Hispanic/Latino children with HR B-ALL. These data suggest that such therapy has the potential to reduce the health disparity in HR B-ALL among Hispanic/Latino children. The dual targeting of oncogene transcription, combined with inhibition of the corresponding oncoprotein provides a paradigm for a novel precision medicine approach for treating hematological malignancies.


Assuntos
Antineoplásicos/uso terapêutico , Linfócitos B/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Serina-Treonina Quinases TOR/genética , Caseína Quinase II/genética , Linhagem Celular , Linhagem Celular Tumoral , Criança , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor/efeitos dos fármacos , Células HEK293 , Humanos , Naftiridinas/farmacologia , Fenazinas/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...